“…Studies in rodents showed that astroglial cells are highly dynamic components of the brain, which respond to locomotion (Nimmerjahn, Mukamel, & Schnitzer, 2009; Sekiguchi et al, 2016; Slezak et al, 2019) or sensory stimulation (Gu et al, 2018; Slezak et al, 2019) with prominent changes in astroglial calcium levels and can regulate learning (Adamsky et al, 2018; Corkrum et al, 2020) or other state transitions (Bojarskaite et al, 2019; Cui et al, 2018; Oe et al, 2020; Poskanzer & Yuste, 2016) in the brain. Norepinephrine (Bekar, He, & Nedergaard, 2008; Oe et al, 2020; Salm & McCarthy, 1990; Shao & McCarthy, 1997) and acetylcholine (Araque, Martin, Perea, Arellano, & Buno, 2002; Pabst et al, 2016; Takata et al, 2011) are proposed to be the primary triggers for activating astroglia, yet several other molecules including glutamate (Hamilton et al, 2008; Mothet et al, 2005; Sun et al, 2013) play prominent roles in astroglial physiology. Consequently, activating astroglia triggers multiple cellular processes leading to release of gliotransmitters, such as glutamate (Fellin et al, 2004; Parpura et al, 1994; Parri, Gould, & Crunelli, 2001), adenosine triphosphate (ATP) (Newman, 2003; Pryazhnikov & Khiroug, 2008), D‐serine (Henneberger, Papouin, Oliet, & Rusakov, 2010) and GABA (Kozlov, Angulo, Audinat, & Charpak, 2006; Lee et al, 2010), which in turn alter neural activity.…”