Photodynamic therapy (PDT), the activation of a photosensitive drug in tumor tissue with light of specific wavelength, has been used effectively to treat certain solid tumors. Though therapeutic responses are encouraging, PDT-mediated oxidative stress can act as an angiogenic switch that ultimately leads to neovascularization and tumor recurrence. This article explores the effect of PDT on angiogenesis in different tumor models. Overexpression of proangiogenic vascular endothelial growth factor, cyclooxygenase-2 and matrix metalloproteases has often been reported post-illumination. Recent clinical studies have demonstrated that inhibiting angiogenesis after chemotherapy and radiotherapy is an attractive and valuable approach to cancer treatment. In this review, we report the effective therapeutic strategy of combining angiogenesis inhibitors with PDT to control and treat tumors.