2022
DOI: 10.48550/arxiv.2201.00447
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Distinction and quadratic base change for regular supercuspidal representations

Abstract: In this article, we study Prasad's conjecture for regular supercuspidal representations based on the machinery developed by Hakim and Murnaghan to study distinguished representations, and the fundamental work of Kaletha on parameterization of regular supercuspidal representations. For regular supercuspidal representations, we give some new interpretations of the numerical quantities appearing in Prasad's formula, and reduce the proof to the case of tori. The proof of Prasad's conjecture then reduces to a compa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 43 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?