A primary culture system of nearly pure neuronal cells from 14-day-old fetal rat spinal cord has been developed by combining a preplating step, the use of a chemically defined serum-free medium, and borated polylysine-coated dishes that prevented the formation of cell aggregates. About 98% of the cells were found to be immunostained with neuron-specific enolase antibodies, confirming their neuronal nature. The cultures are composed essentially of a population of non-motoneurons and contain few motoneurons, characterized by their large size and multipolar aspect, the presence of acetylcholinesterase (AChE), and the intense immunoreaction for growth-associated protein GAP-43. Neuronal precursor cells are also present in these cultures and proliferate during the first 3 days. The addition of bovine brain basic fibroblast growth factor (bFGF) stimulates their proliferation over a period of 2 days, as determined by measurement of [125I]iododeoxyuridine incorporation and by immunocytochemical reaction after bromodeoxyuridine incorporation into nuclei. The proliferating cells were characterized as neurons by immunostaining against neuron-specific enolase. Recombinant human bFGF and bovine brain acidic FGF (aFGF) exerted similar effects. Other growth factors, including epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-beta 1), and thrombin, were without effect on the proliferative activity of these neuronal cells. bFGF has no effect on the survival of motoneurons and on the fiber outgrowth of the whole neuronal population. However, bFGF affects the development of bipolar AChE-positive neurons, probably belonging to the non-motoneuron population. The data indicate that bFGF and aFGF are mitogens for neuroblasts from rat spinal cord in culture and that bFGF influences the development of a subpopulation of spinal neurons that are AChE-positive.