Since the DC-link of the dual-inverter two-stage matrix converter (TSMC) has no energy storage element, its grid-side current waveform is closely related to the load-side condition. The conventional modulation strategy of the dual-inverter TSMC is only the stack of the double inverters, without considering the cooperation between both modulation strategies. Thus, the fluctuations in the grid-side currents synthesized by both load-side currents will be obvious. To solve this problem, this paper analyzes the effect of the current pulse position on the grid-side current waveform quality, and relevant relationship between the pulse position and current harmonics is obtained according to Fourier transform. On this basis, the harmonic attenuation strategy for the dual-inverter TSMC is proposed. In the proposed strategy, the grid-side current harmonic is reduced based on the optimal duty-cycle combination, obtained from the harmonic optimization problem. The simulation and experimental results are provided to verify that the theoretical analysis of grid-side current harmonic content is consistent with the actual condition, and the proposed modulation strategy can effectively reduce the grid-side current harmonic.