The intestinal taste aversion paradigm has previously demonstrated that animals could orally discriminate between carbohydrate and fat subsequent to pairing a gastrointestinal (GI) infusion of 1 nutrient with lithium chloride (LiCl), whereas they could not discriminate between 2 nonnutritive flavors (A. L. Tracy, R. J. Phillips, M. M. Chi, T. L. Powley, & T. L. Davidson, 2004). The present experiments assessed the relative salience of nutritive and nonnutritive stimuli when presented either intestinally or orally. Two compound stimuli, each comprising 1 nutrient and 1 nonnutritive flavor, were presented in training and were paired with LiCl or saline. Subsequent oral intake of the nutrients alone, the flavors alone, or the compounds was measured. Results showed that rats discriminated both nutrients and flavors independently after GI or oral training, whereas the compounds were discriminated only after oral training, indicating substantive differences in the processing of these stimuli. This suggests that nutrient activation of the GI tract may potentiate learning about nonnutritive flavors analogously to taste-potentiated odor conditioning. The ability to learn about the oral properties of stimuli in the GI tract suggests a new account of delayed taste aversion learning as well as learning about the positive nutritive consequences of food consumption.