Petri nets are a formalism for modelling and reasoning about the behaviour of distributed systems. Recently, a reversible approach to Petri nets, Reversing Petri Nets (RPN), has been proposed, allowing transitions to be reversed spontaneously in or out of causal order. In this work we propose an approach for controlling the reversal of actions of an RPN, by associating transitions with conditions whose satisfaction/violation allows the execution of transitions in the forward/reversed direction, respectively. We illustrate the framework with a model of a novel, distributed algorithm for antenna selection in distributed antenna arrays.