In the research of passive millimetre wave (PMMW) imaging, the focal plane array (FPA) can realize fast, wide-range imaging and detection. However, it has suffered from a limited aperture and off-axis aberration. Thus, the result of FPA is usually blurred by space-variant point spread function (SVPSF) and is hard to restore. In this paper, a polar-coordinate point spread function (PCPSF) model is presented to describe the circle symmetric characteristic of space-variant blur, and a log-polar-coordinate transformation (LPCT) method is propagated as the pre-processing step before the Lucy–Richardson algorithm to eliminate the space variance of blur. Compared with the traditional image deblur method, LPCT solves the problem by analyzing the physical model instead of the approximating it, which has proved to be a feasible way to deblur the FPA imaging system.