This paper falls under the problems of the monitoring of a Discrete Event System (DES) with time constraints. Among the various techniques used for online and distributed monitoring, we are interested in the chronicle recognition. Chronicles are temporal patterns that represent the system’s possible evolutions. The proposed models are based on P-time Petri nets that are suitable to represent with accuracy and modularity the Tunisian railway network. These models are scalable and may be used to represent a large variety of railway networks. Then, monitoring is based on the generation of chronicles that are suitable to detect and isolate traffic incidents in a distributed setting. Consequently, the proposed approach is tractable for large networks. Finally, to demonstrate the effectiveness and accuracy of the approach, an application to the case study of the Tunisian railway network is outlined.