This paper explores the problem of attitude stabilization of spacecraft under multiple uncertainties and constrained bandwidth resources. The proposed control law is designed by combining the sliding mode control (SMC) technique with a prescribed performance control (PPC) method. Further, the control input signal is executed in an aperiodic time framework using the event-trigger (ET) mechanism to minimize the control data transfer through a constrained wireless network. The SMC provides robustness against inertial uncertainties, disturbances, and actuator faults, whereas the PPC strategy aims to achieve a predefined system performance. The PPC technique is developed by transforming the system attitude into a new variable using the prescribed performance function, which acts as a predefined constraint for transient and steady-state responses. In addition, the ET mechanism updates the input value to the actuator only when there is a violation of the triggering rule; otherwise, the actuator output remains at a fixed value. Moreover, the proposed triggering rule is constituted through the Lyapunov stability analysis. Thus, the proposed approach can be extended to a broader class of complex nonlinear systems. The theoretical analyses prove the uniformly ultimately bounded stability of the closed-loop system and the non-existence of the Zeno behavior. The effectiveness of the proposed methodology is also presented along with the comparative studies through simulation results.