To work in shared space with humans, autonomous systems must carry unknown loads in predefined missions. With the conventional control scheme, the grounded robot would suffer unstable motion and imprecise tracking performance. To overcome these challenges, in this paper, a novel controller using an adaptive sliding mode for autonomous grounded robots (AGR) is proposed. This control strategy takes into consideration uncertain characteristics, varying loads, and external disturbances. To analyze the tracking performance precisely, the overall error of motion system is decoupled into two subsystems where the second-order system is related to the angular tracking error and the third-order system is associated with the linear one. Initially, the dynamics model of the grounded robot is established containing different elements of nonlinear forces in order to address the technical problems. Then, the system state equation of the autonomous system is mentioned to indicate the theoretical characteristics. Based on the proposed controller, the stability of the system is validated by the Lyapunov theorem. From the results of numerical tests, three practical situations consisting of separately linear and circular trajectories with varying loads and an S-curve trajectory of a working map are suggested. The tracking performance validates that the proposed control scheme is, in various scenarios, robust, effective, and feasible. From these superior outcomes, it can be determined obviously the property of our works in accommodating the variations of cargo from applications in distribution centers, material transportation, or handling equipment.