2022 IEEE International Conference on Data Mining Workshops (ICDMW) 2022
DOI: 10.1109/icdmw58026.2022.00139
|View full text |Cite
|
Sign up to set email alerts
|

Distributed LSTM-Learning from Differentially Private Label Proportions

Abstract: Data privacy and decentralised data collection has become more and more popular in recent years. In order to solve issues with privacy, communication bandwidth and learning from spatio-temporal data, we will propose two efficient models which use Differential Privacy and decentralized LSTM-Learning: One, in which a Long Short Term Memory (LSTM) model is learned for extracting local temporal node constraints and feeding them into a Dense-Layer (LabelProportionToLocal). The other approach extends the first one b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?