This paper presents a tunable bandpass filter based on the varactor-loaded composite right-and left-handed transmission line (CRLH-TL). The proposed filter is composed of one CRLH-TL unit cell, which corresponds to the third-order bandpass filter. The tunable bandpass filter is designed using only lumped-elements. The use of lumped elements saves space and lowers the fabrication cost. The size of the proposed tunable bandpass filter is 17 mm × 5 mm, neglecting the feed lines and DC lines. All of the varactors are controlled by one DC bias. The center frequency of the bandpass filter can be controlled by varying the value of the varactors. The tunable range of the center frequency is from 412.5 to 670 MHz. The insertion loss is less than 3 dB, the return loss is more than 10 dB in the passband. [5,6], and the other is a microelectromechanical system (MEMS) bridge [7,8]. The tunable BPFs using the MEMS technique have an advantage in terms of loss. However, a very high DC bias voltage must be applied to control the bridge height, and MEMS-based BPFs are slow. Often, it is expensive to fabricate the MEMS. Therefore, MEMS-based BPFs are not ideal for commercial wireless applications. In contrast, tunable BPFs with varactors show faster tuning speeds and lower voltage operation. However, because of the low Q varactors, insertion loss inside the passband can be larger in tunable BPFs with the varactor. In controlling the center frequency of the conventional tunable BPFs, the series and parallel resonant frequencies must be controlled simultaneously. Thus, the BPFs should have two DC biases. In [9], the center frequency of the BPF can be tuned from about 0.45