We address the problem of resource allocation (RA) in a cognitive radio (CR) communication system with multiple secondary operators sharing spectrum with an incumbent primary operator. The key challenge of the RA problem is the interoperator coordination arising in the optimization problem so that the aggregated interference at the primary users (PUs) does not exceed the target threshold. While this problem is easily solvable if a centralized unit could access information of all secondary operators, it becomes challenging in a realistic scenario. In this paper, considering a satellite setting, we alleviate this problem by proposing two approaches to reduce the information exchange level among the secondary operators. In the first approach, we formulate an RA scheme based on a partial information sharing method which enables distributed optimization across secondary operators. In the second approach, instead of exchanging secondary users (SUs) information, the operators only exchange their contributions of the interference-level and RA is performed locally across secondary operators. These two approaches, for the first time in this context, provide a trade-off between performance and level of inter-operator information exchange. Through the numerical simulations, we explain this trade-off and illustrate the penalty resulting from partial information exchange.