Distributed optimal control of nonlinear multi‐agent systems based on integral reinforcement learning
Ying Xu,
Kewen Li,
Yongming Li
Abstract:In this article, a distributed optimal control approach is proposed for a class of affine nonlinear multi‐agent systems (MASs) with unknown nonlinear dynamics. The game theory is used to formulate the distributed optimal control problem into a differential graphical game problem with synchronized updates of all nodes. A data‐based integral reinforcement learning (IRL) algorithm is used to learn the solution of the coupled Hamilton–Jacobi (HJ) equation without prior knowledge of the drift dynamics, and the acto… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.