We study the chiral expansion of the baryon octet and decuplet masses in the isospin limit. It is illustrated that a chiral expansion of the one-loop contributions is rapidly converging up to quark masses that generously encompasses the mass of the physical strange quark. We express the successive orders in terms of physical meson and baryon masses. In addition, owing to specific correlations amongst the chiral moments, we suggest a reordering of terms that make the convergence properties more manifest. Explicit expressions up to chiral order five are derived for all baryon masses at the one-loop level. The baryon masses obtained do not depend on the renormalization scale. Our scheme is tested against QCD lattice data, where the low-energy parameters are systematically correlated by large-N c sum rules. A reproduction of the baryon masses from PACS-CS, LHPC, HSC, NPLQCD, QCDSF-UKQCD and ETMC is achieved for ensembles with pion and kaon masses smaller than 600 MeV. Predictions for baryon masses on ensembles from CLS as well as all low-energy constants that enter the baryon masses at N 3 LO are made.