In this paper, a resilient control strategy is proposed to improve the stability of frequency and voltage recovery for the islanded microgrid (MG) under hybrid cyber attacks. To deal with the common false data injection attacks (FDI) and denial of service attacks (DoS) in MGs, the proposed resilient control strategy utilizes the observers to accurately estimate the potential FDI signals on both the sensors and actuators of each distributed generation unit (DG) and reconstruct the unavailable states in the system to enhance the system’s ability actively. The ultimate uniform boundedness (UUB) of the system under hybrid cyber attacks is proved by the Lyapunov stability theory. Finally, an islanded MG system is established in MATLAB/SIMULINK, and multiple scenarios are simulated to verify the effectiveness of the method.