Cracks often appear in concrete arch dams, due to the thermal stress and low tensile strength of early age concrete. There are three commonly used temperature controlling measures: controlling the casting temperature, burying cooling pipe, and protecting the surface. However, because of the difficulty to obtain accurate temperature and thermal stress field of the concrete, the rationality and economy of these measures are not assessed validly before and after construction. In this paper, a crack risk evaluation system for early age concrete is established, including distributed optical fiber temperature sensing (DTS), prediction of temperature and stress fields, and crack risk evaluation. Based on the DTS temperature data, the back-analysis method is applied to retrieve the thermal parameters of concrete. Then, the temperature and thermal stress of early age concrete are predicted using the reversed thermal parameters, as well as the laboratory test parameters. Finally, under the proposed cracking risk evaluation principle, the cracking risk level of each concrete block is given; the preliminary and later temperature controlling measures were recommended, respectively. The application of the proposed system in Xiluodu super high arch dam shows that this system works effectively for preventing cracks of early age concrete.