Besides routing and packing plans, synthetically considering the requirements of customers about service time is absolutely necessary. An order split delivery plan can not only better satisfy the service time requirements, but also improve the full-load rate of vehicles. The split delivery vehicle routing problem with three-dimensional loading constraints (3L-SDVRP) combines vehicle routing and three-dimensional loading with additional packing constraints. In the 3L-SDVRP splitting deliveries of customers is basically possible, i.e., a customer can be visited in two or more tours. The vehicle routing problem with three-dimensional loading constraints that are based on the time window and considering split delivery of orders (3L-CVRPTWSDO) and its optimization algorithm are studied in this paper. We established mathematical model of the problem and designed the tabu search algorithm. Based on the examples used in Gendreau et al. (2006), examples was constructed to test our algorithm. The experimental results have expressed that, in the 3L-CVRP problem, the results of split delivery is better than those of non-split delivery, and it is easier to satisfy the time window constraints. The algorithm in this paper generates high quality solutions, it provides a effective method to solve the 3L-CVRPTWSDO problems.