Given the fact that threatened species are often composed of isolated small populations, spatial continuity or demography of the populations may be major factors that have shaped the species’ genetic diversity. Thus, neutral loci have been the most commonly-used markers in conservation genetics. However, the populations under the influence of different environmental factors may have evolved in response to different selective pressures, which cannot be fully reflected in neutral genetic variation. Rhodeus pseudosericeus, a bitterling species (Acheilognathidae; Cypriniformes) endemic to the Korean Peninsula, are only found in some limited areas of three rivers, Daecheon, Han and Muhan, that flow into the west coast. Here, we genotyped 24 microsatellite loci and two loci (DAB1 and DAB3) of MHC class II peptide-binding β1 domain for 222 individuals collected from seven populations. Our microsatellite analysis revealed distinctive differentiation between the populations of Daecheon and Muhan Rivers and the Han River populations, and populations were structured into two subgroups within the Han River. Apparent positive selection signatures were found in the peptide-binding residues (PBRs) of the MHC loci. The allelic distribution of MHC showed a degree of differentiation between the populations of Daecheon and Muhan Rivers and the Han River populations, partially similar to the results obtained for microsatellites, however showed rather complex patterns among populations in the Han River. Considering the apparent differences in the distribution of supertypes obtained based on the physicochemical differences induced by the polymorphisms of these PBRs, the differentiation in DAB1 between the two regional groups may result in the differences in immune function. No differentiation between these two regions was observed in the supertyping of DAB3, probably indicating that only DAB1 was associated with the response to locally specialized antigenic peptides.