2021
DOI: 10.48550/arxiv.2105.14075
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Distribution-free inference for regression: discrete, continuous, and in between

Abstract: In data analysis problems where we are not able to rely on distributional assumptions, what types of inference guarantees can still be obtained? Many popular methods, such as holdout methods, cross-validation methods, and conformal prediction, are able to provide distribution-free guarantees for predictive inference, but the problem of providing inference for the underlying regression function (for example, inference on the conditional mean E [Y |X]) is more challenging. In the setting where the features X are… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?