Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with communityacquired urosepsis (n ؍ 146) and from uninfected subjects (n ؍ 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, <0.001), (ii) frequently harbored both toxin-encoded genes in phylogroup B2 (33%), and (iii) were predictive of a urosepsis origin (P, <0.001 to 0.005). However, the prevalences of the pks island among phylogroup B2 strains, in contrast to those of the cnf1 gene, were not significantly different between fecal and urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks-or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin.The bacterial species Escherichia coli comprises a wide diversity of strains belonging to the commensal intestinal flora of humans and warm-blooded animals. Among these strains, several pathogenic variants cause intestinal or extraintestinal infections in humans and animals (33). Population genetic studies based on multilocus enzyme electrophoresis and various DNA markers (10,20,44) classify the E. coli strains into four major phylogenetic groups (A, B1, B2, and D). The groups are diversely associated with certain ecological niches and propensities to cause disease.Extraintestinal pathogenic E. coli (ExPEC) strains are facultative pathogens that are not yet fully described. They are reported to belong mainly to phylogroups B2 and D, and they possess high numbers of virulence genes that belong to a flexible gene pool (43, 53). Among ExPEC strains, uropathogenic E. coli (UPEC) strains take advantage of host behavior and susceptibility by employing virulence factors that facilitate bacterial growth and persistence in the urinary tract (5, 28-30). Important virulence mechanisms are adhesion, invasion, subversion of host defenses, and direct interference with host cellular functions via secreted effectors (33,69).These effectors include the cyclomodulins (CMs), a functional class of toxins that hijack the cell cycle, a fundamental host cell process (48). In the ...