Chlorogenic acid (CGA) plays several biological roles, but lacks studies that demonstrate how this phenolic compound affects animal reproduction. The aim of the present study was to evaluate the effects of different CGA concentrations on bovine oocyte maturation and embryo development in vitro. This study also evaluates co-culture systems involving bovine granulosa cells (BGC) from fed with CGA containing plant, Pittosporum Undulatum. The ovaries were recovered after slaughter and the oocytes were removed, maturated, in vitro fertilized and cultured in medium containing CGA in 5 different concentrations 1.25; 2.5; 5; 10; 20 µm and a control group (0 µm) for seven days. Selected oocytes (n = 1040) were maturated in any of the 5 treatment or control groups. Significantly lower (P < 0.05) maturation rates were observed for the highest CGA concentrations 10 µm, and 20 µm, compared to the control group (Control = 93.4 ± 2.1% vs. 10 µm = 80.9 ± 2.2%; 20 µm 77.9 ± 3.3%). We observed that the higher the concentration of CGA present, the lower the rate of cleavage and development after 3 and 7 days, respectively. It was observed that the significant difference recorded in regards to embryonic development were evident between control and group (20; 51.1 ±5.6 vs. 19.4 ± 2.2%). In respects to the study involving co-culture of embryos with BGC the only difference recorded involved the block rate. No differences (P > 0.05) were identified between control and experimental groups in relation to the progesterone production by BGC. These results suggest that CGA may affect oocyte maturation and inhibit the progression of meiosis and consequently the entire embryo development in vitro.