Integration of rooftop photovoltaic (PV) systems in a three-phase four-wire distribution network cause voltageviolations namely voltage-rise and voltage unbalance. This study investigates the factors that affect both the voltage-rise and voltage unbalance in low voltage distribution network integrated with the rooftop PV systems. The concerning factors are classified into active factors such as; loads active powers, PV active powers, and bus reactive powers, and passive factors such as; numbers of feeder buses and neutral-grounded resistances. The study also determines the factors conditions at which the highest values of both voltage-rise and voltage unbalance occurred. Moreover, the most and least significant effects of individual factors on both voltage-rise and voltage unbalance are studied. The studied system is simulated and implemented in MATLAB software environment and the feeder loads are modelled based on Back-Forward Sweep method. The simulation results identify that the conditions of the worst voltage-rise and voltage unbalance cases depend on the collective influence of the studied factors.