Measurement uncertainty is a vital issue within analytical science. There are strong arguments that primary sampling should be considered the first and perhaps the most influential step in the measurement process. Increasingly, analytical laboratories are required to report measurement results to clients together with estimates of the uncertainty. Furthermore, these estimates can be used when pursuing regulation enforcement to decide whether a measured analyte concentration is above a threshold value. With its recognised importance in analytical measurement, the question arises of 'what is the most appropriate method to estimate the measurement uncertainty?'. Two broad methods for uncertainty estimation are identified, the modelling method and the empirical method. In modelling, the estimation of uncertainty involves the identification, quantification and summation (as variances) of each potential source of uncertainty. This approach has been applied to purely analytical systems, but becomes increasingly problematic in identifying all of such sources when it is applied to primary sampling. Applications of this methodology to sampling often utilise long-established theoretical models of sampling and adopt the assumption that a 'correct' sampling protocol will ensure a representative sample. The empirical approach to uncertainty estimation involves replicated measurements from either inter-organisational trials and/or internal method validation and quality control. A more simple method involves duplicating sampling and analysis, by one organisation, for a small proportion of the total number of samples. This has proven to be a suitable alternative to these often expensive and time-consuming trials, in routine surveillance and one-off surveys, especially where heterogeneity is the main source of uncertainty. A case study of aflatoxins in pistachio nuts is used to broadly demonstrate the strengths and weakness of the two methods of uncertainty estimation. The estimate of sampling uncertainty made using the modelling approach (136%, at 68% confidence) is six times larger than that found using the empirical approach (22.5%). The difficulty in establishing reliable estimates for the input variable for the modelling approach is thought to be the main cause of the discrepancy. The empirical approach to uncertainty estimation, with the automatic inclusion of sampling within the uncertainty statement, is recognised as generally the most practical procedure, providing the more reliable estimates. The modelling approach is also shown to have a useful role, especially in choosing strategies to change the sampling uncertainty, when required.