The effects of expression of Drosophila melanoga ster Ca 2+ permeable transient receptor potential-like (TRPL) channels, under the control of the cytomegalovirus (CMV) or prostate cell-specific promoters, on cell survival and apoptosis in the androgen-sensitive LNCaP prostate cancer cell line were investigated. A prostate-specific antigen (PSA) promoter construct (designated PSAEn/PSAPr) composed of a 0.6 kb region of the promoter and a 1.45 kb region of the enhancer resulted in androgen-dependent and prostatespecific expression of a luciferase reporter gene in transiently transfected LNCaP cells. Expression of the enhanced green fluorescence protein-TRPL chimeric protein under the control of the CMV promoter was confirmed by Western blot. Whereas the majority of the expressed protein was located in the cytoplasmic space, confocal microscopy with the CD-9 protein as a plasma membrane marker demonstrated that approximately 10% of the expressed TRPL protein was located in a band in the plasma membrane. Using recombinant adenoviruses, expression of the TRPL protein was associated with an increase in both the initial and sustained rates of Ca 2+ inflow. Expression of TRPL under the control of the CMV promoter for 96 hours decreased cell number and increased the number of cells undergoing apoptosis by 23 and 27%, respectively. Apoptosis was inhibited by a caspase-3 inhibitor, Z-DEVD-fmk. It is concluded that, when heterologously expressed in LNCaP cells, the TRPL protein leads to a reduction in cell survival due, in part, to the induction of apoptosis. The effects of TRPL are likely caused by enhanced Na + and Ca 2+ inflow to the cells. This finding suggests a novel approach to modify the growth of prostate cancer cells that fail to undergo apoptosis following androgen ablation therapy.