<abstract><p>For an odd prime $ p $ and a positive integer $ \alpha $, let $ g $ be of multiplicative order $ \tau $ modulo $ q $ and $ q = p^{\alpha} $. Denote by $ N(h, g, q) $ the number of $ a $ such that $ h\nmid (a+(g^{a})_{q}) $ for any $ 1\leq a\leq \tau $ and a fixed integer $ h\geq 2 $ with $ (h, q) = 1 $. The main purpose of this paper is to give a sharp asymptotic formula for</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ N(k, h, g, q) = \mathop{\sum\limits_{\begin{smallmatrix}
a = 1\\ h\nmid (a+(g^{a})_{q})
\end{smallmatrix}}^{\tau}}\left|a-(g^{a})_{q}\right| ^{2k} $\end{document} </tex-math></disp-formula></p>
<p>where $ k $ is any nonnegative integer and $ (a)_{q} $ denotes the smallest positive residue of $ a $ modulo $ q $. In addition, we know that $ N(h, g, q) = N(0, h, g, q) $.</p></abstract>