Subject to environmental changes and recurrent isolation in the last ca. 250 Ma, cycads are often described as relicts of a previously common lineage, with populations characterized by low genetic variation and restricted gene flow. We found that on the island of Guam, the endemic Cycas micronesica has most of the genetic variation of 14 EST-microsatellites distributed within each of 18 genetic populations, from 24 original sampling sites. There were high levels of genetic variation in terms of total number of alleles and private alleles, and moderate levels of inbreeding. Restricted but ongoing gene flow among populations within Guam reveals a genetic mosaic, probably more typical of cycads than previously assumed. Contiguous cycad populations in the north of Guam had higher selfrecruitment rates compared to fragmented populations in the south, with no substantial connection between them except for one population. Guam's genetic mosaic may be explained by the influence of forest continuity, seed size, edaphic differences, and human transport of cycads. Also important are the extent of synchrony among flushes of reproductive female seed-bearing sporophylls and restricted pollen movement by an obligate mutualist and generalist insects. An NADH EST-locus under positive selection may reflect pressure from edaphic differences across Guam. This and three other loci are ideal candidates for ecological genomic studies. Given this species' vulnerability due to the recent introduction of the cycad aulacaspis scale, we also identify priority populations for ex situ conservation, and provide a genetic baseline for understanding the effects of invasive species on cycads in the Western Pacific, and islands in general.