The distributions of D-amino acid oxidase (D-AAO, EC 1.4.3.3) and D-aspartate oxidase (D-AspO, EC 1.4.3.1) activities were examined on several tissues of various fish species. Both enzyme activities were commonly high in kidney and liver and low in intestine with some exceptions. After oral administration of D-alanine at 5 micromol /g body weight(-1)day(-1) to carp for 30 days, D-AAO activity increased by about 8-, 3-, and 1.5-fold in intestine, hepatopancreas, and kidney, respectively, whereas no increase was found in brain. In contrast, oral administration of D-glutamate or D-aspartate did not show any increase of D-AspO activity in any tissues. D-AAO and D-AspO of common carp kidney and hepatopancreas were subcellularly localized in peroxisomes, as clarified in mammals. D-proline was the best substrate for D-AAO in rainbow trout kidney, common carp kidney, and hepatopancreas, followed by D-alanine and D-phenylalanine. N-methyl-D-aspartate was the best substrate for D-AspO in rainbow trout kidney and common carp hepatopancreas. The optimal pH for D-AAO in rainbow trout kidney was broad, from 7.4 to 8.2, and that for D-AspO was around 10. D-AAO was inhibited by benzoate known as D-AAO inhibitor and D-AspO was strongly inhibited by meso-tartarate as D-AspO inhibitor. From these results, at least D-AAO in fish is considered to work as a metabolizing agent of exogenous and endogenous free D-alanine that is abundant in aquatic invertebrates such as crustaceans and bivalve mollusks, which are potential food sources of these fishes.