SUMMARYThe present study aimed to elucidate the development and γ-amino butyric acid (GABA)-ergic regulation of larval swimming in the sea urchin Hemicentrotus pulcherrimus by cloning glutamate decarboxylase (Hp-gad), GABA A receptor (Hp-gabrA) and GABA A receptor-associated protein (Hp-gabarap), and by performing immunohistochemistry. The regulation of larval swimming was increasingly dependent on the GABAergic system, which was active from the 2days post-fertilization (d.p.f.) pluteus stage onwards. GABA-immunoreactive cells were detected as a subpopulation of secondary mesenchyme cells during gastrulation and eventually constituted the ciliary band and a subpopulation of blastocoelar cells during the pluteus stage. Hp-gad transcription was detected by RT-PCR during the period when Hp-Gad-positive cells were seen as a subpopulation of blastocoelar cells and on the apical side of the ciliary band from the 2d.p.f. pluteus stage. Consistent with these observations, inhibition of GAD with 3-mercaptopropioninc acid inhibited GABA immunoreactivity and larval swimming dose dependently. Hp-gabrA amplimers were detected weakly in unfertilized eggs and 4d.p.f. plutei but strongly from fertilized eggs to 2d.p.f. plutei, and Hp-GabrA, together with GABA, was localized at the ciliary band in association with dopamine receptor D1 from the two-arm pluteus stage. Hpgabarap transcription and protein expression were detected from the swimming blastula stage. Inhibition of the GABA A receptor by bicuculline inhibited larval swimming dose dependently. Inhibition of larval swimming by either 3-mercaptopropionic acid or bicuculline was more severe in older larvae (17 and 34d.p.f. plutei) than in younger ones (1d.p.f. prism larvae).