Transcriptional dysregulation has emerged as a core pathologic feature of Huntington's disease (HD), one of several triplet-repeat disorders characterized by movement deficits and cognitive dysfunction. Although the mechanisms contributing to the gene expression deficits remain unknown, therapeutic strategies have aimed to improve transcriptional output via modulation of chromatin structure. Recent studies have demonstrated therapeutic effects of commercially available histone deacetylase (HDAC) inhibitors in several HD models; however, the therapeutic value of these compounds is limited by their toxic effects. Here, beneficial effects of a novel pimelic diphenylamide HDAC inhibitor, HDACi 4b, in an HD mouse model are reported. Chronic oral administration of HDACi 4b, beginning after the onset of motor deficits, significantly improved motor performance, overall appearance, and body weight of symptomatic R6/2 300Q transgenic mice. These effects were associated with significant attenuation of gross brain-size decline and striatal atrophy. Microarray studies revealed that HDACi 4b treatment ameliorated, in part, alterations in gene expression caused by the presence of mutant huntingtin protein in the striatum, cortex, and cerebellum of R6/2 300Q transgenic mice. For selected genes, HDACi 4b treatment reversed histone H3 hypoacetylation observed in the presence of mutant huntingtin, in association with correction of mRNA expression levels. These findings suggest that HDACi 4b, and possibly related HDAC inhibitors, may offer clinical benefit for HD patients and provide a novel set of potential biomarkers for clinical assessment.rologic disorder caused by a CAG repeat expansion within the coding region of the HD gene (Htt), resulting in a mutant protein (htt) with a lengthened polyglutamine tract (1). Mutant htt protein has been shown to disrupt transcription by multiple mechanisms, but it is unclear which are most important to pathology (2-4). By interacting with specific transcription factors, htt can alter the expression of clusters of genes controlled by those factors. For example, several genes driven by Sp1, which has been shown to interact with htt (5, 6), show decreased mRNA expression in human HD and in mouse models of HD (7). Alternatively, htt may have more global effects on transcription by disrupting core transcriptional machinery (8, 9) or by altering posttranslational modifications of histones, resulting in condensed chromatin structure (10-13). Understanding the basis for transcriptional dysregulation is important for choosing appropriate drug-discovery strategies.Manifestations of transcriptional dysregulation are evident from several gene-profiling studies, which have revealed alterations in the expression of large numbers of genes in the brains of different HD mouse models and in human subjects with HD (7, 14-16). Many of the expression changes in mouse models are observed in early stages of illness before the onset of symptoms, suggesting that gene expression alterations may be pathogenic.Because o...