The kinetics of aluminum removal from silicon melt to CaO-SiO 2 -Al 2 O 3 slag was studied. A recently designed experimental setup using mechanical stirring was employed to focus the study on the chemical reaction. The slag and metal were found to reach chemical equilibrium in 300 seconds. A simple model could reproduce the experimental data satisfactorily. Both the experimental results and the model prediction further confirmed that the process was controlled by the chemical reaction, since the reaction rate constant was found to be independent of the amount of slag and the initial slag composition. The experimental data at equilibrium were compared with the model calculations. The discrepancy between the model calculations and the experimental data strongly suggests the need for careful thermodynamic measurements.