Tape length-dependence of voltagecurrent curve, critical current and n-value in a coated conductor with a local crack were studied by modeling analysis. In calculation, the specimen length was varied in the range of 1.5 to 18 cm where the influence of cracking of superconducting layer is sharply reflected in the voltagecurrent curve. The following results were obtained, which can be utilized for analysis and interpretation of the experimental results under applied tensile stress in laboratory scale of specimen length. The existence of a crack changed the critical current and n-value through the decrease in current-transportable cross-sectional area of the superconducting layer and the current shunting in the cracked cross-section for any specimen length and any crack size, while the extent of the change was dependent on specimen length and crack size. When the crack was large, critical current increased slightly and n-value decreased significantly with increasing specimen length due to the enhanced shunting current. On the other hand, when the crack was small, critical current increased slightly with specimen length due to the enhanced shunting current similarly to the case of large crack, but n-value decreased with increasing specimen length due to the enhanced shunting current but then it increased due to the enhanced voltage-development at higher voltage in the non-cracked part. Also, the features of the dependence of the relation of n-value to critical current on specimen length were revealed; the decrease in n-value with decreasing critical current became sharper for longer specimen.