Maintaining link stability among randomly deployed network nodes is one of the key challenges for effective communication in mobile ad hoc networks (MANETs). Under uniform speed and random trajectory of mobile nodes, there must be a unified model to determine an adequate strategy that addresses the issue of link stability in MANETs. We present a novel dynamic link connectivity (DLC) strategy that maintains link stability through efficient link connectivity among the neighboring nodes using Hello messaging. We also perform stochastic analysis of the proposed strategy, which predicts the future link status among the neighboring nodes at different time steps of a Markov process. We find that the link stability is affected by the received signal strength, signal-to-noise ratio, transition rates between the connection and disconnection states, and probabilities of link connectivity and disconnectivity at steady state. Analytical and simulation results indicate efficacy of the proposed strategy in terms of reduced communication overhead, lower propagation delay, and better energy efficiency of the network. The results also demonstrate that the proposed strategy minimizes the average response time, increases the throughput, and reduces the packet loss ratio, thereby, maintaining efficient link stability among the neighboring nodes.