ETT2 is a second cryptic type III secretion system in Escherichia coli which was first discovered through the analysis of genome sequences of enterohemorrhagic E. coli O157:H7. Comparative analyses of Escherichia and Shigella genome sequences revealed that the ETT2 gene cluster is larger than was previously thought, encompassing homologues of genes from the Spi-1, Spi-2, and Spi-3 Salmonella pathogenicity islands. ETT2-associated genes, including regulators and chaperones, were found at the same chromosomal location in the majority of genome-sequenced strains, including the laboratory strain K-12. Using a PCR-based approach, we constructed a complete tiling path through the ETT2 gene cluster for 79 strains, including the well-characterized E. coli reference collection supplemented with additional pathotypes. The ETT2 gene cluster was found to be present in whole or in part in the majority of E. coli strains, whether pathogenic or commensal, with patterns of distribution and deletion mirroring the known phylogenetic structure of the species. In almost all strains, including enterohemorrhagic E. coli O157:H7, ETT2 has been subjected to varying degrees of mutational attrition that render it unable to encode a functioning secretion system. A second type III secretion systemassociated locus that likely encodes the ETT2 translocation apparatus was found in some E. coli strains. Intact versions of both ETT2-related clusters are apparently present in enteroaggregative E. coli strain O42.The species Escherichia coli contains a wide range of commensal strains and pathogenic varieties (pathotypes) in addition to the model laboratory organism, E. coli K-12 (16). At least six pathotypes are associated with human intestinal disease: they are enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli, enteroaggregative E. coli (EAEC), and diffusely adherent E. coli. Two pathotypes are associated with extraintestinal disease in humans, namely uropathogenic E. coli (UPEC) and neonatal meningitic E. coli (NMEC). In addition, it is now clear that on phylogenetic grounds, all members of the genus Shigella belong within the species of E. coli (50). Furthermore, this dazzling phenotypic variety is matched by remarkable variations in genome size, with the largest E. coli genomes possessing more than a megabase more DNA than the smallest ones (43).Initial studies of UPEC, and later of other pathotypes, suggested that E. coli strains often acquire new complex pathogenic phenotypes in a single step by the acquisition of pathogenicity islands, which contain virulence genes clustered on the chromosome and which are acquired en bloc by horizontal gene transfer (21). Similar studies with the related bacterium Salmonella enterica have delineated several Salmonella pathogenicity islands (Spi-1, Spi-2, Spi-3, etc.) (2, 22). The horizontal transfer of DNA by mobile elements such as bacteriophages and plasmids is also known to play a role in the evolution of virulence in E. coli and S...