BackgroundDNA transposons are generally destroyed by mutations and have short lifespans in hosts, as they are neutral or harmful to the host and therefore not conserved by natural selection. The clawed frog Xenopus harbors many DNA transposons and certain families, such as T2-MITE, have extremely long lives. These have ancient origins, but have shown recent transposition activity. In addition, certain transposase genes may have been “domesticated” by Xenopus and conserved over long time periods by natural selection. The aim of this study was to elucidate the evolutionary interactions between the host and the long-lived DNA transposon family it contains. Here, we investigated the molecular evolution of the Kolobok DNA transposon superfamily. Kolobok is thought to contribute to T2-MITE transposition.ResultsIn the diploid western clawed frog Xenopus tropicalis and the allotetraploid African clawed frog Xenopus laevis, we searched for transposase genes homologous to those in the Kolobok superfamily. To determine the amplification and domestication of these genes, we used molecular phylogenetics and analyses of copy numbers, conserved motifs, orthologous gene synteny, and coding sequence divergence between the orthologs of X. laevis and X. tropicalis, or between those of two distant X. tropicalis lineages. Among 38 X. tropicalis and 24 X. laevis prospective transposase genes, 10 or more in X. tropicalis and 14 or more in X. laevis were apparently domesticated. These genes may have undergone multiple independent domestications from before the divergence of X. laevis and X. tropicalis. In contrast, certain other transposases may have retained catalytic activity required for transposition and could therefore have been recently amplified.ConclusionMultiple domestication of certain transposases and prolonged conservation of the catalytic activity in others suggest that Kolobok superfamily transposons were involved in complex, mutually beneficial relationships with their Xenopus hosts. Some transposases may serve to activate long-lived T2-MITE subfamilies.Electronic supplementary materialThe online version of this article (10.1186/s40851-018-0100-4) contains supplementary material, which is available to authorized users.