The candidate order "Pelagibacterales" (SAR11) is one of the most abundant bacterial orders in ocean surface waters and, periodically, in freshwater lakes. The presence of several stable phylogenetic lineages comprising "Pelagibacterales" correlates with the physico-chemical parameters in aquatic environments. A previous amplicon sequencing study covering the bacterial community in the salinity gradient of the Baltic Sea suggested that pelagibacteral subclade SAR11-I was replaced by SAR11-IIIa in the mesohaline region of the Baltic Sea. In this current study, we investigated the cellular abundances of "Pelagibacterales" subclades along the Baltic Sea salinity gradient using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The results obtained with a newly designed probe, which exclusively detected SAR11-IIIa, were compared to CARD-FISH abundances of the marine SAR11-I/II subclade and the freshwater lineage SAR11-IIIb (LD12). The results showed that SAR11-IIIa was abundant in oligohaline-mesohaline conditions (salinities 2.7-13.3), with maximal abundances at a salinity of 7 (up to 35% of total Bacteria, quantified with a universal bacterial probe EUB). As expected, SAR11-I/II was abundant (27% of EUB) in the marine parts of the Baltic Sea, whereas counts of the freshwater lineage SAR11-IIIb were below the detection limit at all stations. The shift from SAR11-IIIa to SAR11-I/II was confirmed in the vertical salinity gradient in the deeper basins of the Baltic Sea. These findings were consistent with an overlapping but defined distribution of SAR11-I/II and SAR11-IIIa in the salinity gradient of the Baltic Sea and suggested the adaptation of SAR11-IIIa for growth and survival in mesohaline conditions.