Due to a lack of well‐preserved terrestrial climate archives, paleoclimate studies are sparse in southwestern Africa. Because there are no perennial lacustrine systems in this region, this study relies on a saline pan as an archive for climate information in the western Kalahari (Namibia). Molecular biological and biogeochemical analyses were combined to examine the response of indigenous microbial communities to modern and past climate‐induced environmental conditions. The 16S rRNA gene high‐throughput sequencing was applied to sediment samples from Omongwa pan to characterize the modern microbial diversity. Highest diversity of microorganisms, dominated by the extreme halophilic archaeon Halobacteria and by the bacterial phylum Gemmatimonadetes, was detected in the near‐surface sediments of Omongwa pan. In deeper sections abundance and diversity significantly decreases and Bacillus, known to form spores, become dominant. Lipid biomarkers for living and past microbial life were analyzed to track the influence of climate variation on the abundance of microbial communities from the Last Glacial Maximum to Holocene time. Since water is an inevitable requirement for microbial life, in this dry region the abundance of past microbial biomarkers was evaluated to conclude on periods of increased paleoprecipitation in the past. The data point to a period of increased humidity in the western Kalahari during the Last Glacial to Holocene transition indicating a southward shift of the Intertropical Convergence Zone during this period. Comparison with results from a southwestern Kalahari pan suggests complex displacements of the regional atmospheric systems since the Last Glacial Maximum.