Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (Grus monacha), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following. (1) The elevation (Elev, 43.7%), distance to major water (DW, 39.5%), minimum temperature of the coldest month (Bio6, 9.7%), and precipitation of the wettest month (Bio13, 2.6%) were dominant factors influencing the wintering distribution of hooded cranes. (2) Under current climate and land use scenarios, highly suitable areas for hooded cranes in China cover approximately 1.274 × 105 km2, primarily located in inland lakes such as Dongting Lake, Liangzi Lake, Poyang Lake, Shengjin Lake, and Caizi Lake in the middle and lower reaches of the Yangtze River, as well as in coastal wetlands such as Chongming East Beach, Shandong Peninsula, Bohai Bay, and Liaodong Peninsula. (3) Under future climate and land use scenarios, the suitable habitat areas (high and moderate suitability) for hooded cranes are projected to contract substantially in the middle and lower reaches of the Yangtze River and expand slightly in the areas of Shandong Peninsula, Bohai Bay, and Liaodong Peninsula. Under the SSP126 (low emissions), SSP245 (medium emissions), and SSP585 (high emissions) scenarios, the average area reduction percentages were 29.1%, 28.8%, and 31.6%, respectively. (4) The increases in Bio6 and water areas in northern China were the main reasons for the shift of the wintering distribution centroid for hooded cranes toward northeastern China. The minor expansion of suitable habitat in the north covers mainly cultivated land, and this singular foraging habitat could intensify both intraspecific and interspecific competition among waterbirds, thus exacerbating the survival risks for hooded cranes. To more effectively protect the wintering population of hooded cranes in China, the restoration of natural habitats and population monitoring in the middle and lower reaches of the Yangtze River should be strengthened. Additionally, nature reserves or protected areas should be established in the northern expansion regions.
In the context of global warming and intensified human activities, the loss and fragmentation of species habitats have been exacerbated. In order to clarify the trends in the current and future suitable wintering areas for hooded cranes (Grus monacha), the MaxEnt model was applied to predict the distribution patterns and trends of hooded cranes based on 94 occurrence records and 23 environmental variables during the wintering periods from 2015 to 2024. The results indicated the following. (1) The elevation (Elev, 43.7%), distance to major water (DW, 39.5%), minimum temperature of the coldest month (Bio6, 9.7%), and precipitation of the wettest month (Bio13, 2.6%) were dominant factors influencing the wintering distribution of hooded cranes. (2) Under current climate and land use scenarios, highly suitable areas for hooded cranes in China cover approximately 1.274 × 105 km2, primarily located in inland lakes such as Dongting Lake, Liangzi Lake, Poyang Lake, Shengjin Lake, and Caizi Lake in the middle and lower reaches of the Yangtze River, as well as in coastal wetlands such as Chongming East Beach, Shandong Peninsula, Bohai Bay, and Liaodong Peninsula. (3) Under future climate and land use scenarios, the suitable habitat areas (high and moderate suitability) for hooded cranes are projected to contract substantially in the middle and lower reaches of the Yangtze River and expand slightly in the areas of Shandong Peninsula, Bohai Bay, and Liaodong Peninsula. Under the SSP126 (low emissions), SSP245 (medium emissions), and SSP585 (high emissions) scenarios, the average area reduction percentages were 29.1%, 28.8%, and 31.6%, respectively. (4) The increases in Bio6 and water areas in northern China were the main reasons for the shift of the wintering distribution centroid for hooded cranes toward northeastern China. The minor expansion of suitable habitat in the north covers mainly cultivated land, and this singular foraging habitat could intensify both intraspecific and interspecific competition among waterbirds, thus exacerbating the survival risks for hooded cranes. To more effectively protect the wintering population of hooded cranes in China, the restoration of natural habitats and population monitoring in the middle and lower reaches of the Yangtze River should be strengthened. Additionally, nature reserves or protected areas should be established in the northern expansion regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.