2023
DOI: 10.48550/arxiv.2302.09456
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Distributional Offline Policy Evaluation with Predictive Error Guarantees

Abstract: We study the problem of estimating the distribution of the return of a policy using an offline dataset that is not generated from the policy, i.e., distributional offline policy evaluation (OPE). We propose an algorithm called Fitted Likelihood Estimation (FLE), which conducts a sequence of Maximum Likelihood Estimation (MLE) problems and has the flexibility of integrating any state-of-art probabilistic generative models as long as it can be trained via MLE. FLE can be used for both finite horizon and infinite… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?