The paper describes the results of a measurement campaign to characterize the non-intentional emissions (NIE) that are present in the low voltage section of the electrical grid, within the frequency range assigned to narrowband power line communications (NB-PLC), from 20 kHz to 500 kHz. These NIE may severely degrade the quality of the communications and, in some cases, even isolate the transmission devices. For this reason, the identification and characterization of these perturbations are important aspects for the proper performance of the smart grid services based on PLC. The proper characterization of NIE in this frequency range is a key aspect for the selection of efficient configurations to find the best trade-off between data throughput and robustness, or even for the definition of new improved error detection and correction methods. The huge number of types of NIE, together with the wide variety of grid topologies and loads distribution (density and location of homes and industrial facilities) are great challenges that complicate the thorough characterization of NIE. This work contributes with results from field trials in different scenarios, the identification of different types of NIE and the characterization both in time and frequency domains of all the registered disturbances. This contribution will be helpful for a better knowledge of the electrical grid as a transmission medium for PLC and, therefore, for evaluating the appropriateness of different robustness techniques to be applied in the next generation of smart grid services.