In recent years, the cost-effectiveness and versatility of Unmanned Aerial Vehicles (UAVs) have led to their widespread adoption in both military and civilian applications, particularly for operations in remote or hazardous environments where human intervention is impractical. The use of multi-agent UAV systems has notably increased for complex tasks such as surveying and monitoring, driving extensive research and development in control, communication, and coordination technologies. Evaluating and analysing these systems under dynamic flight conditions present significant challenges. This paper introduces a mathematical model for leader–follower structured Quadrotor UAVs that encapsulates their dynamic behaviour, incorporating a novel multi-agent ad hoc coordination network simulated via COOJA. Simulation results with a pipeline surveillance case study demonstrate the efficacy of the coordination network and show that the system offers various improvements over contemporary pipeline surveillance approaches.