π-Extended pyrene compounds possess remarkable luminescent and semiconducting properties and are being intensively investigated as electroluminescent materials for potential uses in organic light-emitting diodes, transistors, and solar cells. Here, the synthesis of two sets of pyrene-containing π-conjugated polyaromatic regioisomers, namely 2,3,10,11,14,15,20,21-octaalkyloxypentabenzo[a,c,m,o,rst]pentaphene (BBPn) and 2,3,6,7,13,14,17,18-octaalkyloxydibenzo[j,tuv]phenanthro [9,10-b]picene (DBPn), is reported. They were obtained using the Suzuki–Miyaura cross-coupling in tandem with Scholl oxidative cyclodehydrogenation reactions from the easily accessible precursors 1,8- and 1,6-dibromopyrene, respectively. Both sets of compounds, equipped with eight peripheral aliphatic chains, self-assemble into a single hexagonal columnar mesophase, with one short-chain BBPn homolog also exhibiting another columnar mesophase at a lower temperature, with a rectangular symmetry; BBPn isomers also possess wider mesophase ranges and higher mesophases’ stability than their DBPn homologs. These polycyclic aromatic hydrocarbons all show a strong tendency of face-on orientation on the substrate and could be controlled to edge-on alignment through mechanical shearing of interest for their implementation in photoelectronic devices. In addition, both series BBPn and DBPn display green-yellow luminescence, with high fluorescence quantum yields, around 30%. In particular, BBPn exhibit a blue shift phenomenon in both absorption and emission with respect to their DBPn isomers. DFT results were in good agreement with the optical properties and with the stability ranges of the mesophases by confirming the higher divergence from the flatness of DBPn compared with BBPn. Based on these interesting properties, these isomers could be potentially applied not only in the field of fluorescent dyes but also in the field of organic photoelectric semiconductor materials as electron transport materials.