Diurnal Changes and Machine Learning Analysis of Perovskite Modules Based on Two Years of Outdoor Monitoring
Vasiliki Paraskeva,
Matthew Norton,
Andreas Livera
et al.
Abstract:Long-term stability is the primary challenge for the commercialization of perovskite photovoltaics, exacerbated by limited outdoor data and unclear correlations between indoor and outdoor tests. In this study, we report on the outdoor stability testing of perovskite mini-modules conducted over a two-year period. We conducted a detailed analysis of the changes in performance across the day, quantifying both the diurnal degradation and the overnight recovery. Additionally, we employed the XGBoost regression mode… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.