Research Highlights: Seedlings of different Quercus suber L. populations and half-sib families differ in their response to multiple stressors, which may have consequences on the future distribution of this Mediterranean species. Background and Objectives: Global change will likely increase the frequency and severity of drought in drylands. Plant species’ distributions will largely depend on their ability to respond to the combined effect of drought and other environmental stressors. Genetic diversity in morpho-functional traits are key components of this response. Yet, information on the response to multiple stresses is scarce for many iconic species. The present study assessed the variability in the response of populations and half-sib families of a Mediterranean acidophilous tree, cork oak, to drought and changes in soil conditions. Materials and Methods: We sampled acorns of half-sib families from two cork oak populations genetically introgressed with the alkaline-tolerant species Quercus ilex L., and from a non-introgressed cork oak population located in its core habitat. We germinated the acorns and subjected seedlings to contrasted levels of water availability and additions of calcium and magnesium carbonate, and assessed their morpho-physiological response. Results: Response to drought and soil chemistry composition differed between populations and families. For some traits, introgressed populations responded similarly to drought than the non-introgressed population. Conversely, the response to soil chemistry was not clearly related to introgression. When considering half-sib families within populations, the population effect diminished, which revealed the importance of intra-population variation. However, relevant traits for water scarcity adaptations, such as specific leaf area and root:shoot ratio, remained significantly different at the population level, which highlights the relevance of these traits for management. Conclusions: Our study shows that the adaptive management and restoration of cork oak forests should consider not only geographic provenances, but also half-sib lines within populations.