Abstract-Correlative data suggest that cardiac mast cells are a component of the inflammatory response that is important to hypertension-induced adverse myocardial remodeling. However, a causal relationship has not been established. We hypothesized that adverse myocardial remodeling would be inhibited by preventing the release of mast cell products that may interact with fibroblasts and other inflammatory cells. Eight-week-old male spontaneously hypertensive rats were treated for 12 weeks with the mast cell stabilizing compound nedocromil (30 mg/kg per day). Age-matched Wistar-Kyoto rats served as controls. Nedocromil prevented left ventricular fibrosis in the spontaneously hypertensive rat independent of hypertrophy and blood pressure, despite cardiac mast cell density being elevated. The mast cell protease tryptase was elevated in the spontaneously hypertensive rat myocardium and was normalized by nedocromil. Treatment of isolated adult spontaneously hypertensive rat cardiac fibroblasts with tryptase induced collagen synthesis and proliferation, suggesting this as a possible mechanism of mast cell-mediated fibrosis. In addition, nedocromil prevented macrophage infiltration into the ventricle. The inflammatory cytokines interferon-␥ and interleukin (IL)-4 were increased in the spontaneously hypertensive rat and normalized by nedocromil, whereas IL-6 and IL-10 were decreased in the spontaneously hypertensive rat, with nedocromil treatment normalizing IL-6 and increasing IL-10 above the control. These results demonstrate for the first time a causal relationship between mast cell activation and fibrosis in the hypertensive heart. Furthermore, these results identify several mechanisms, including tryptase, inflammatory cell recruitment, and cytokine regulation, by which mast cells may mediate hypertension-induced left ventricular fibrosis.