Copper (Cu)‐based metal–organic frameworks (MOFs) and MOF‐derived catalysts are well studied for electroreduction of carbon dioxide (CO2); however, the effects of organic linkers for the selectivity of CO2 reduction are still unrevealed. Here, a series of Cu‐based MOF‐derived catalysts is investigated with different organic linkers appended, named X‐Cu‐BDC (BDC = 1,4‐benzenedicarboxylic acid, X = NH2, OH, H, F, and 2F). It is found that the linkers affect the faradaic efficiency (FE) for C2 products with an order of NH2 < OH < bare Cu‐BDC < F < 2F, thus tuning the FEC2:FEC1 ratios from 0.6 to 3.8. As a result, the highest C2 FE of ≈63% at a current density of 150 mA cm−2 on 2F‐Cu‐BDC derived catalyst is achieved. Using operando Raman measurements, it is revealed that the MOF derives to Cu2O during eCO2RR but organic linkers are stable. The fluorine group in organic linker can promote the H2O dissociation to *H species, further facilitating the hydrogenation of *CO to *CHO that helps CC coupling.