Weatherable semicrystalline polyesters based on 1,4-cyclohexanedimethanol, 1,4-cyclohexanedicarboxylic acid (CHDA) or dimethyl 1,4-cyclohexane dicarboxylate (DMCD) can be prepared under normal melt-phase conditions, using titanium tetrabutoxide as catalyst. The effect of monomer ratio, reaction temperature and catalyst loading on the final polymer properties was studied. Under the proper polymerization conditions, poly(1,4-cyclohexylenedimethylene-1,4-cyclohexanedicarboxylate) polymers with high molecular weight can be obtained. During polymerization, isomerization can occur towards the thermodynamically stable cis-trans ratio of 34-66 mol%. Carboxylic acid end groups can catalyze the isomerization and therefore the polymerization is more critical starting from CHDA rather than DMCD. Moreover, temperature control becomes a key factor to avoid or to limit isomerization. The study of the isomerization of the different monomers permitted a better understanding of the isomerization and therefore of the polymerization process