B-cell acute lymphoblastic leukaemia (B-ALL) is characterized by the overproduction of lymphoblasts in the bone marrow (BM), and it is the most common cancer in children while being comparatively uncommon in adults. On the other hand, in chronic myeloid leukaemia (CML), 70% of cases are found in patients older than 50 years, making it uncommon in children. All CML cases and up to 3% of paediatric B- ALL (and 25% of adult B-ALL) cases are due to fusion gene BCR-ABL1, which gives rise to the cytoplasmatic, constitutively active oncoprotein, tyrosine kinase BCR-ABL1 through a reciprocal translocation between chromosomes 9 and 22. The constitutively active BCR-ABL tyrosine kinase leads to deregulation of different signal transduction pathways such as cell growth, proliferation and cell survival. The role of the bone marrow microenvironment (BMM) can mediate disease initiation (only in mice), progression, therapy resistance, and relapse, as has been increasingly recognized over the last two decades. In general, the BMM is a very complex arrangement of various cell types such as osteoblasts, osteoclasts, endothelial cells, adipocytes, mesenchymal stromal cells, macrophages and several others. In addition, the BMM is composed of multiple chemical and mechanical factors and extra cellular matrix (ECM) proteins which contribute to the BMM’s features influencing leukaemia behaviour. Considering the incidence of B-ALL and CML in children and in adults respectively, we hypothesized that the young and/or an aged BMM might also play a previously unrecognized role in the aggressiveness of B-ALL and CML. We proposed that BM, transduced with BCR-ABL1-expressing retrovirus in the murine transduction/transplantation model of B-ALL, transplanted into young versus old recipient mice would lead to a more aggressive disease in young mice, and similarly CML would be more aggressive in old recipient mice. In close recapitulation with the human incidence, induction of CML led to a significantly shorted survival in old recipient mice. On the other hand, induction of B-ALL showed a shortened survival in young compared to old syngeneic mice, as well as in a xenotransplantation model. Among the highly heterogenous composition of the BMM, we implicate young BM macrophages as a supportive niche for B-ALL cells. The results were found to be mostly due to potential soluble factors differentially secreted from young and old macrophages. Therefore, we hypothesized that the chemokine CXCL13, which has been demonstrated to play a role in B cell migration and act as a diagnostic marker in the cerebrospinal fluid of patients with neuroborreliosis, might be responsible for the observed phenotype. CXCL13 was found to be more highly expressed in healthy and leukaemic young mice as well as in conditioned medium of young macrophages. Using a variety of in vitro experiments, CXCL13 showed to significantly increase the proliferation and the migration of leukaemia cells when exposed to young macrophages, and the phenotype was rescued while using a CXCL13 neutralizing antibody. The CXCL13 role was also confirmed in vivo, since macrophage ablation led to a prolongation of survival in young mice and a reduction of CXCL13 levels. The use of an additional mouse model, leukaemia cells with CXCR5 deficiency, led to a significant prolongation of survival of young mice, confirming the importance of the CXCL13-CXCR5 axis in B-ALL. In line with our murine results, we found that human macrophages and CXCL13 levels were higher in pediatric B-ALL patients than in adults. Consistent with our murine data, the expression level of CXCR5 may act as a prognostic marker in B-ALL, as well as a predictive marker for central nervous system relapse in human B-ALL. The overall findings show that a young BMM, and in particular macrophages, influences B-ALL progression. We specifically identified CXCL13, secreted by young macrophages, as a promoter of proliferation of B-ALL cells, influencing survival in B-ALL via CXCR5. The CXCR5-CXCL13 axis may be relevant in human B-ALL, and higher CXCR5 expression in human B-ALL may act as a predictive marker.