Background. Ovarian cancer (OC) seriously threatens women’s life. Ferroptosis plays an essential role in the initiation and development of OC. However, more molecular targets and mechanisms for ferroptosis in OC remain to be further elucidated. Methods. Several OC datasets were integrated in this study and three candidate genes including PRNP were further screened out as the ferroptosis-related gene which was differentially expressed in OC. Then, comprehensive evaluations concerning gene expression, clinical implication, in vitro validation of expression and functional experiments, prediction of downstream molecules and related signal pathways, and immune-modulating function were performed. Results. PRNP was the only downregulated ferroptosis-related gene with prognostic value for OC patients. The decreased mRNA and protein expression was verified in OC tissues and cell lines. PRNP was significantly correlated with cancer stages, primary therapy outcomes, and age in OC patients. Moreover, we found that overexpression of PRNP inhibited the proliferation, migration, and invasion ability of OC cells through in vitro experiments. PRNP was enriched to the Ras signaling pathway. PRNP expression was positively correlated with the infiltration of immune cells, such as mast cells, T effector memory cells, plasmacytoid DC cells, NK cells, and eosinophils. In addition, the association of PRNP with other immune signatures was also found. Conclusion. This study demonstrated for the first time showed that ferroptosis-related gene PRNP exerted a tumor suppressive role in OC and the aberrant expression and function of PRNP making it a potential novel biomarker for OC diagnosis, prognosis, and response to immunotherapies.